Capillary-based static self-assembly in higher organisms.

نویسندگان

  • Jonathan Voise
  • Michael Schindler
  • Jérôme Casas
  • Elie Raphaël
چکیده

Organized structures produced by dynamic self-assembly are often observed in animal groups. Static self-assembly, however, has to date only been observed at the cellular and sub-cellular levels. The aim of this study was to analyse organized structures in immobile whirligig beetle groups on the water surface. We used theoretical and computational approaches to model the meniscus around whirligig beetles and to calculate the surface energy for configurations involving two beetles. Theoretical predictions were then tested using live insects and resin casts. Observations were also made for three and more casts. The meniscus of whirligig beetles had a bipolar shape with two concave parts. For two beetles, predicted configurations based on energy minima corresponded to beetles in contact by their extremities, forming lines and arrows, and agreed well with observations. Experimental results for three and more beetle casts revealed new geometrical arrangements similar to those obtained with colloids at interfaces. This study provides the first example of static self-assembly at the inter-organism level and shows the importance of capillary interactions in such formations. We identify the ecological context in which our findings are of relevance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enabling Capillary Self-Assembly for Microsystem Integration

Efficient and precise assembly of very-large quantities of sub-millimeter-sized devices onto pre-processed substrates is presently a key frontier for microelectronics, in its aspiration to large-scale mass production of devices with new functionalities and applications (e.g. thin dies embedded into flexible substrates, 3D microsystem integration). In this perspective, on the one hand establishe...

متن کامل

Self-Assembly of Flat Micro Components by Capillary Forces and Shape Recognition

This paper summarizes our recent reports on self-assembly of flat micro components based on two major mechanisms: capillary-driven self-assembly and feature-directed self-assembly. The capillary-driven self-assembly is demonstrated in both a liquid environment and an air environment, and high accuracy self-alignment is achieved due to interfacial energy minimization. Working devices such as Lig...

متن کامل

Control of shape and size of nanopillar assembly by adhesion-mediated elastocapillary interaction.

Control of self-organization of nanofibers into regular clusters upon evaporation-induced assembly is receiving increasing attention due to the potential importance of this process in a range of applications including particle trapping, adhesives, and structural color. Here we present a comprehensive study of this phenomenon using a periodic array of polymeric nanopillars with tunable parameter...

متن کامل

Diamondoids and DNA Nanotechnologies

Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...

متن کامل

The Effect of Matrix Order in Dna Capillary Zone Electrophoresis

The effect of order in separation media on DNA capillary zone electrophoresis is studied experimentally. A microfluidic technique based on colloidal self-assembly is employed to generate structures with different degrees of order. A model, SEM, and thermoporosimetry of the structures are employed to characterize media properties. The DNA mobility and dispersion coefficient is quantified in each...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 8 62  شماره 

صفحات  -

تاریخ انتشار 2011